The Magnetic Properties of Copper(II) 3- and 5-Substituted 2-Pyridinolates

Shuji Emori,* Ryuichi Furukawa, and Shoichi Nakashima Department of Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840 (Received March 26, 1990)

Synopsis. The N,N-dimethylformamide adducts of copper(II) 3- and 5-substituted 2-pyridinolates were prepared, and then characterized by means of magnetic susceptibility and IR-spectroscopy. The variation in their magnetic moments is discussed in terms of the basicities of the parent 2-pyridones.

Most copper(II) carboxylates have dinuclear structures similar to that of copper(II) acetate monohydrate, 1,2) and exhibit strong antiferromagnetic interactions between pairs of copper(II) ions. In conformity with a superexchange mechanism, the strength of spin-exchange coupling has been correlated with the acidity of the parent carboxylic acid (pK_{a2}) .^{3,4)} However, it might be correlated more simply with the basicity of the parent carboxylic acid (pK_{a1}), since the bridging carboxylate acts as a bidentate ligand. A magnetic study of a series of copper(II) 3- and 5substituted 2-pyridinolates, which have copper(II) acetate-type dinuclear structures, 5,6) may provide answers to such questions, since the ionization constants of pyridones are well characterized7) and in a series of 3- and 5-substituted 2-pyridones, the pK_{a1} values increase in a different order from the pK_{a2} values. We thus prepared some copper(II) 3- and 5-substituted 2-pyridinolate adducts with N,Ndimethylformamide, Cu(XpyO)2 · DMF and investigated their magnetic properties.

The 3- and 5-substituted 2-pyridones studied here, except for the 3-halo derivatives, were obtained commercially. 3-Chloro- and 3-bromo-2-pyridones were prepared by the thermal rearrangement of the corresponding pyridine N-oxides.8) The DMF adducts of their copper(II) salts were prepared according to procedures very similar to those previously reported for the 2-pyridinolate and 3-methyl-2-pyridinolate compounds.5) The IR spectra of the solid compounds show bands of coordinated carbonyl stretching vibrations, while the C=O stretching vibrations intermix with the adjacent C=C stretching motions. 6,11) Their effective magnetic moments (Table 1) were evaluated from the room-temperature molar magnetic susceptibilities $(\chi_{\rm M})$ using the equation $\mu_{\rm eff}=2.83[(\chi_{\rm M} \chi_{\text{dia}} = N\alpha T^{-1/2}$. The appropriate diamagnetic corrections (χ_{dia}) were estimated from the Pascal constants,⁹⁾ and the temperature-independent paramagnetic contribution $(N\alpha)$ was taken as 60×10^{-6} emu mol⁻¹ (1 emu= $4\pi \times 10^{-6}$ m³). For 3-nitro-2-pyridinolate, the temperature dependence of its magnetic susceptibility was measured in the temperature range 80-300 K, and could be represented by the Bleaney-Bowers equation¹⁰⁾ with parameters g=2.17 and 2J=-314 cm⁻¹. The magnetic and spectral data indicate that the present compounds have pyridinolate-bridged dinuclear structures. The variation in the singlet-triplet separation values (e.g., $-2J=405,^{5}$) 365,⁵) and 314 cm⁻¹ for the DMF adducts of copper(II) 3-methyl-2-pyridinolate, 2-pyridinolate, and 3-nitro-2-pyridinolate, respectively) indicates that the smaller magnetic moment is accompanied by a stronger magnetic interaction between copper(II) ions.

Comparisons of the room-temperature magnetic moments for the 3- and 5-chloro-2-pyridinolate compounds or 3- and 5-nitro-2-pyridinolate compounds (Table 1) with that for the 2-pyridinolate compound show that these magnetic moments are affected more strongly by the 3-substituents than by the substituents like the basicities of the parent 2-This implies that the strength of the spin-exchange coupling is correlated more closely with the pK_{a1} value than with the pK_{a2} value, irrespective of some steric and resonance effects. In order to demonstrate such a correlation, the room-temperature magnetic moments (in BM) of the present compounds, together with the literature data for the DMF adducts of copper(II) 2-pyridinolate, 3-methyl-2-pyridinolate, and 3-ethyl-2-pyridinolate,⁵⁾ are plotted against the pK_{a1} values of the ligands in Fig. 1. The plot consists of a straight line which has the same slope as that for dinuclear copper(II) carboxylates:4)

Table 1. Analytical Data and Effective Magnetic Moments at 20 °C

Compand		Found(Calcd)/%				$\mu_{ m eff}/{ m BM}$
Compound		Cu	С	Н	N	μ _{eff} / DIVI
Cu(3-ClpyO) ₂ ·DMF	(1)	16.31	39.30	3.35	10.64	1.36
		(16.14)	(39.66)	(3.33)	(10.67)	
$Cu(3-BrpyO)_2 \cdot DMF$	(2)	13.35	32.08	2.74	8.60	1.33
	. ,	(13.17)	(32.35)	(2.71)	(8.71)	
$Cu(3-NO_2pyO)_2 \cdot DMF$	(3)	15.49	37.42	3.21	16.68	1.41
	` '	(15.32)	(37.64)	(3.16)	(16.88)	
$Cu(5\text{-}ClpyO)_2 \cdot DMF$	(4)	16.33	`39.38	3.36	`10.59 [′]	1.28
	` '	(16.14)	(39.66)	(3.33)	(10.67)	
Cu(5-NO ₂ pyO) ₂ ·DMF	(5)	15.47	37.69	$3.24^{'}$	16.90	1.34
	(*)	(15.32)	(37.64)	(3.16)	(16.88)	

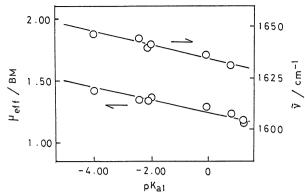


Fig. 1. The magnetic moments at 20 °C and the carbonyl stretching frequencies for the DMF adducts of copper(II) 3- and 5-substituted 2-pyridinolate plotted against the basicities of the parent 2-pyridones.

$$\mu_{\text{eff}} = -0.052 \,(\text{p}K_{\text{a}1} - 0.77) + 1.19_3.$$
 (1)

Similarly, the carbonyl frequencies (in cm⁻¹) for the present compounds show systematic shifts against the basicities of the parent 2-pyridones ($\tilde{\nu}$ =1634–3.2× p K_{a1}). These linear correlations indicate that (1) the influence exerted by the 3- and 5-substituents is mainly inductive, i.e., their resonance and steric effects are practically negligible, and (2) the strength of spin-

exchange coupling is governed by the strength of the Cu-O bond, not the Cu-N bond, i.e., it is determined by the strength of the weakest bond in the coupling pathway.

References

- 1) J. N. von Niekerk and F. R. L. Schoening, Acta Crystallogr., 6, 227 (1953).
- 2) G. M. Brown and R. Chidambaram, Acta Crystallogr., Sect. B, 29, 2393 (1973).
- 3) M. Melnik, Coord. Chem. Rev., 42, 259 (1982); and references therein.
- 4) S. Emori, S. Matsunaga, and M. Goto, *Bull. Chem. Soc. Jpn.*, **62**, 4047 (1989).
- 5) Y. Nishida and S. Kida, *Bull. Chem. Soc. Jpn.*, **58**, 383 (1985).
- 6) S. K. Yeh, D. S. Liaw, and S. M. Peng, *Bull. Inst. Chem.*, *Acad. Sin.*, **34**, 49 (1987).
- 7) E. Spinner and J. C. B. White, J. Chem. Soc., Sect. B, 1966, 991.
- 8) M. P. Cava and B. Weinstein, J. Org. Chem., 23, 1616 (1958).
- 9) G. Foex, "Constants Sélectionées, Diamagnétisme et Paramagnétisme," Masson, Paris (1957).
- 10) B. Bleaney and K. D. Bowers, *Proc. Roy. Soc.*, **A214**, 451 (1952).
- 11) L. J. Bellamy, "The Infrared Spectra of Complex Molecules," 3rd ed, Chapman and Hall, London (1975).